Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Genomics Education Partnership (GEP), a consortium of diverse colleges and universities, provides support for integrating genomics research into undergraduate curricula. To increase research opportunities for underrepresented students, GEP is expanding to more community colleges (CC). Genomics research, requiring only a computer with Internet access, may be particularly accessible for two-year institutions with limited research capacity and significant budget constraints. To understand how GEP supports student research at CCs, the authors analyzed student knowledge and self-reported outcomes. It was found that CC student gains were comparable to non-CC student gains, with improvements in attitudes toward science and thriving in science. The early findings suggest that the GEP model of centralized support with flexible implementation of a course-related undergraduate research experience benefits CC students and may help mitigate barriers to implementing research at CCs.more » « less
-
Wang, Jack (Ed.)The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster . To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students’ perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data, collected over three academic years and involving 14 institutions and 480 students, show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents’ educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students’ efficacy with research methods, sense of belonging to the scientific research community, and interest in pursuing additional research experiences.more » « less
-
Genetic screens are valuable for identifying novel genes involved in the regulation of developmental processes. To identify genes associated with cell growth regulation in Drosophila melanogaster, a mutagenesis screen was performed. Undergraduate students participating in Fly-CURE phenotypically characterized the E.4.1 mutant which is associated with rough eyes and antennae overgrowth. Following complementation analysis and subsequent genomic sequencing, E.4.1 was identified as a novel mutant allele of GstE14, a gene involved in ecdysone biosynthesis important for the timing of developmental events. The abnormal eye and antenna phenotypes observed resulting from the loss of GstE14 suggest its role in tissue growth.more » « less
-
The E.3.3 mutation was generated in a Flp/FRT EMS screen for conditional mutations that cause growth and developmental defects in a genetic background that blocks apoptosis. The mutations were conditional, based on the Dark82allele being present on the starting chromosome, and blocking canonical apoptosis in a homozygous state. The E.3.3 mosaic eyes exhibit defects in eye development including patches of rough eye and irregular surface structure. Whole Genome Sequencing and complementation mapping revealed E.3.3 as an allele of prod. Prod is a DNA-binding protein that binds satellite repeats and is involved in chromocenter formation during mitosis. Here we present a novel allele of prod, prodE.3.3, that disrupts the functional region of the Prod protein resulting in disruption of typical eye structure, likely due to disruption of chromatid separation during development.more » « less
-
Marshall, Pamela Ann (Ed.)ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.more » « less
An official website of the United States government
